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ADDED MASSES OF A CYLINDER

INTERSECTING THE INTERFACE OF A TWO-LAYER

WEIGHTLESS FLUID OF FINITE DEPTH

UDC 532.5I. V. Sturova

The linear problem of high-frequency oscillations of a horizontal cylinder floating at the interface
of a two-layer fluid was solved numerically using the boundary element method. Added masses are
calculated for circular and elliptic cylinders.

Key words: added masses, two-layer fluid, Green’s function, method of hybrid finite elements.

Introduction. When a body moves in an inviscid fluid, the inertial properties of the latter are determined
by added masses. For bodies of various shapes moving in a homogeneous fluid, these characteristics have been
extensively studied [1]. Density stratification affects added mass values; this effect has been studied most compre-
hensively for a fluid consisting of two layers of different densities. In those studies, a floating or submerged body was
assumed to be within one layer. A recent study of the two-dimensional problem of seakeeping of a body intersecting
an interface [2] revealed difficulties that arise in numerical solution of this problem using the method of boundary
integral equations (BIE), which is the most commonly used method for determining hydrodynamic loads on bodies.

In the present paper, a numerical solution is obtained using an alternative method of hybrid finite elements
(HFE). This is an effective and universal method for solving both two-dimensional and three-dimensional problems
of seakeeping theory.

Formulation of the Problem. An ideal incompressible fluid consists of two layers of different densities.
Both fluids are assumed to be infinite in the horizontal direction and bounded in the vertical direction by the free
surface from above and a flat horizontal bottom from below.

The radiation problem of motions in the fluid initially at rest caused by small high-frequency oscillations of
a body. This is equivalent to the assumption that the fluid is weightless; i.e., the accelerations imparted to fluid
particles by body oscillations far exceed the acceleration of gravity. This assumption has been widely used in impact
theory [1].

The oscillating body is a horizontal cylinder of infinite length; therefore, the problem in question is two-
dimensional.

In the absence of the body, the upper fluid layer of density ρ1 and width H1 occupies the region L(1)

(|x| < ∞, 0 < y < H1) and the lower fluid layer of density ρ2 = ρ1(1 + ε) and width H2 occupies the region L(2)

(|x| < ∞, −H2 < y < 0), where x is the horizontal coordinate and y is the vertical coordinate. The subscripts 1
and 2 correspond to the upper and lower layers. The submerged body intersecting the interface occupies the region
V = V (1)∪V (2). The closed body contour Γ = Γ(1)∪Γ(2) shares two common points P± with the interface (Fig. 1).

To determine the radiation potentials ϕ(s)
j (x, y) corresponding to horizontal (j = 1), vertical (j = 2), and

rolling (j = 3) oscillations, one needs to solve the boundary-value problem (for more detail, see, for example, [2])

∆ϕ(s)
j = 0, (x, y) ∈ L(s) \ V (s) (s = 1, 2)
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Fig. 1. Scheme of flow and finite elements.

subject to the boundary conditions

ϕ
(1)
j = 0 (y = H1); (1)

∂ϕ
(1)
j

∂y
=
∂ϕ

(2)
j

∂y
, ρ1ϕ

(1)
j = ρ2ϕ

(2)
j (y = 0); (2)

∂ϕ
(2)
j

∂y
= 0 (y = −H2); (3)

∂ϕ
(s)
j

∂n
= nj , (x, y) ∈ Γ(s). (4)

In Eq. (4), n1 is the horizontal component of the inner normal to the contour Γ, n2 is the vertical component, and

n3 = (y − y0)n1 − (x− x0)n2 (5)

(x0 and y0 are the coordinates of the point around which rolling oscillations of the body are performed). At a
distance from the body, the motion is assumed to decay.

The added-mass coefficients µkj , characterizing the inertial properties of the fluid, are defined by the formula

µkj =
2∑
l=1

ρl

∫
Γ(l)

ϕ
(l)
j nk ds. (6)

Numerical Method. The problem formulated above for an arbitrary contour Γ is solved by the HFE
method, which has been employed previously to solve the radiation problem for a cylinder completely submerged in
the lower layer of a two-layer fluid [3]. In this method, the velocity potentials are represented using finite elements
in a narrow region W = W (1) ∪W (2) surrounding the body and using the BIE method in the external region. The
region W is bounded from the outside by a rectangular contoured ABCD which contains the specified body (Fig.
1). We denote this rectangular contour by S = S(1) ∪ S(2). It intersects the interface at two points Q±.

To construct the BIE, one needs to determine Green’s function G(s,l)(x, y; ξ, η) for the problem considered,
where s is the number of the layer containing the point of observation (x, y); the source (ξ, η) is placed in the layer
with a number l.

Green’s function satisfies the equation

∆x,yG
(s,l) = 2πδ(x− ξ, y − η)

with the boundary conditions similar to Eqs. (1)–(3) and the condition of damping in the far field and δ is the
Dirac delta function.

Green’s function can be defined in different ways. In this paper, we use the following representations:

G(1,1) = ln
r

r1
+

∞∫
0

1 + ε− t2
1 + e−2kH1

[ek(η−2H1) − e−kη][e−ky − ek(y−2H1)]D(k, x, ξ) dk,
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G(2,1) = 2

∞∫
0

[ek(η−2H1) − e−kη][eky + e−k(y+2H2)]
(1 + e−2kH1)(1 + e−2kH2)

D(k, x, ξ) dk,

G(1,2) = 2(1 + ε)

∞∫
0

[e−k(η+2H2) + ekη][ek(y−2H1) − e−ky]
(1 + e−2kH1)(1 + e−2kH2)

D(k, x, ξ) dk,

G(2,2) = ln
r

r2
+

∞∫
0

D(k, x, ξ) dk
1 + e−2kH2

{
e−k(η+H2)(e2kη − 1)

× [(1 + ε+ t1)e−k(y+H2) − (1 + ε− t1)ek(y−H2)]− 2t1ekη[eky + e−k(y+2H2)]
}
.

Here

r =
√

(x− ξ)2 + (y − η)2, r1 =
√

(x− ξ)2 + (y + η − 2H1)2,

r2 =
√

(x− ξ)2 + (y + η)2, t1 = tanh kH1, t2 = tanh kH2,

D(k, x, ξ) = cos k(x− ξ)/[k(1 + ε+ t1t2)].

For an infinite two-layer fluid (H1,H2 →∞), Green’s function is written in simple form [2]:

G(1,1) = ln r + e1 ln r2, G(2,1) = (1− e1) ln r,

G(1,2) = (1 + e1) ln r, G(2,2) = ln r − e1 ln r2, e1 = ε/(2 + ε).

The system of BIE is derived as described in [4]. For the problem considered, this system is written as

ρmϕ
(m)
j (ζ) =

1
α

2∑
l=1

ρl

∫
S(l)

[
ϕ

(l)
j (z)

∂G(l,m)(z, ζ)
∂nz

−G(l,m)(z, ζ)
∂ϕ

(l)
j

∂n

]
ds (m = 1, 2),

z = x+ iy, ζ = ξ + iη.
(7)

During counterclockwise motion along the contour W , α = 3π/2 for the vertices A,B,C, and D and α = π for all
other points.

When the HFE method is used, the region W is covered with quadrangular elements (Fig. 1). In this case,
the segments Q+B and Q−A are divided into NY1 equal parts, the segments CQ+ and DQ− are divided into NY2
parts, and the segments AB and DC, into NX parts. The segments P+Q+ and Q−P− are the element boundaries.

Using Green’s theorem, we obtain
2∑
l=1

[∫ ∫
W (l)

∇ϕ(l)
j ∇ψ dx dy −

∫
S(l)

∂ϕ
(l)
j

∂n
ψ ds

]
=

2∑
l=1

∫
Γ(l)

∂ϕ
(l)
j

∂n
ψ ds, (8)

where ψ(x, y) is an arbitrary weight function. For each element, we introduce eight-point quadratic isoparametric
shape functions Nk (k = 1, . . . , 8). The derivatives ∂ϕ(l)

j /∂n on the right side of Eq. (8) are known from boundary
condition (4), and on the left side, they are determined from the system of BIE (7) for S. The relationship between
the vectors Φj with the components ϕ(l)

j and the vectors Ψj with the components ∂ϕ(l)
j /∂n at the nodes of the

contour S is found from Eq. (7) in matrix form using the analog of the shape functions Nk for the one-dimensional
case:

AΦj = BΨj .

Here A and B are quadratic matrices of dimensionality 2M [M = 2(NY1 + NY2 + NX) is the number of elements
in the region W ]. From this relation, we obtain the relations

Ψj = CΦj , C = B−1A

and use them in the corresponding discrete form (8) replacing ψ by the functions Nk.
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Fig. 2. Added masses M11 (solid curves) and M22 (dashed curves) versus the depth of the lower
layer for a circular cylinder for h = 0 and H1/a = 2 (a) and h/a = 0.5 and H1/a = 1 (b): ε = 0
(1), 0.3 (2), and ∞ (3).

Thus, for each j = 1, 2, 3, we must solve a system of linear equations of order 5M to determine the values
of ϕ(l)

j for all nodal points. An advantage of the HFE method is that integration over the body contour, whose
shape can be rather complicated, is substituted in (7) by analytically integrating over a rectangular contour. The
hydrodynamic load is determined after calculating the integrals in (6).

Calculation Results. Numerical calculations were performed for the elliptic contour

x2/a2 + (y + h)2/b2 = 1,

where a and b are the major and minor semiaxes of the ellipse, respectively, and h is the depth of submergence of
its center under the interface. In all these calculations, the width of the rectangular contour S is 2a+ 0.4b and its
height is 2.4b.

It is known that for a contour symmetric about the vertical axis y, only the added-mass coefficients µjj
(j = 1, 2, 3) and µ13 are nonzero. The dimensionless values of these coefficients were normalized as follows:

(M11,M22) = (µ11, µ22)/(πρ2b
2), M33 = µ33/(πρ2b

4), M13 = µ13/(πρ2b
3).

Figure 2 shows curves of the coefficients M11 and M22 for a circular cylinder (a = b) versus the lower-layer
depth H2. For h = 0, the numerical solution was performed for the values NX = 6, NY1 = 3, and NY2 = 3
(number of elements M = 24), and for h = 0.5b, we used NX = 7, NY1 = 2, and NY2 = 5 (M = 28). In the
absence of stratification (ε = 0), the problem reduces to determining the added masses of a completely submerged
cylinder. This problem was studied in detail, for example, in [1]. It is known that as H2 → ∞, M11 = M22. As
ε → ∞, the initial problem is equivalent to determining the added masses of a body floating on the free surface
of a homogeneous fluid. The case of vertical oscillations of a semicircle floating on the surface of a fluid of finite
depth is considered in [5]. A comparison of the tabular values of M22 given in [5] with the results obtained by the
proposed method showed that they agree with an accuracy of up to 0.5%.

The limiting values of M11 and M22 as H1,H2 → ∞ for the examined depths of submergence of a circular
cylinder and density jumps ε are given in [2].

Calculation results for an elliptic contour (a/b = 2) are shown in Fig. 3 for h = 0 and H1 = 2b and in Fig. 4
for h = 0.5b and H1 = b. Rolling oscillations are performed about the geometrical center of the ellipse, i.e., x0 = 0
and y0 = −h in (5).

In the numerical calculations, we set NX = 12, NY1 = 3, and NY2 = 3 (M = 36) for h = 0 and NX = 14,
NY1 = 2, and NY2 = 5 (M = 42) for h = 0.5b. Table 1 lists the limiting values of the added-mass coefficients as
H1,H2 →∞ for this elliptic contour.
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Fig. 3. Added masses versus lower-layer depth for an elliptic cylinder for a/b = 2, h = 0, and
H1/b = 2 and ε = 0 (1), 0.3 (2), and ∞ (3): solid curves refer to M11 and M33 and dashed curves
refer to M22 and M13.
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Fig. 4. Added masses versus lower-layer depth for an elliptic cylinder for a/b = 2, h/b = 0.5, and
H1/b = 1 (notation the same as in Fig. 3).
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TABLE 1

ε
h/b = 0.5 h = 0

M11 M22 M33 M13 M11 M22 M33 M13

∞ 0.386 2.236 0.631 0.373 0.203 2.001 0.562 0.318
0.3 0.898 3.617 1.021 0.072 0.875 3.537 0.994 0.073
0 1.000 3.999 1.123 0 1.000 3.999 1.123 0

It is known that for a semiellipse floating on the free surface of a homogeneous fluid of finite depth [6], we
have

µ11 = 2ρ2b
2/π, µ22 = πρ2a

2/2, µ33 = πρ2(a2 − b2)2/16, µ13 = ρ2b(a2 − b2)/3.

Then, for the specified elongation of the ellipse (a/b = 2), we obtain the following added-mass coefficients:

M11 ≈ 0.203, M22 = 2, M33 ≈ 0.563, M13 ≈ 0.318.

These coefficients differ by less than 0.2% from the corresponding coefficients listed in Table 1 for h = 0 and ε =∞.
The same error takes place for ε = 0, which corresponds to ellipse oscillations in an infinite homogeneous fluid. In
this case, only the following diagonal coefficients are nonzero:

µ11 = πρ1b
2, µ22 = πρ1a

2, µ33 = πρ1(a2 − b2)2/8.

Hence, for this ellipse, M11 = 1, M22 = 4, and M33 = 1.125.
The results presented above show that the effect of the finite depths of the layers is significant. Korotkin [1]

noted that for an oscillating body floating on the free surface of a homogeneous fluid of finite depth H, the bottom
has almost no effect if H > 4T (T is the draft of the body). In the two-layer fluid considered, the effect of the
finite dimensions of the layers is insignificant if a similar condition is satisfied in both the upper and lower layers. A
decrease in the upper-layer density, i. e. an increase in ε, leads to a decrease in the diagonal added mass coefficients
Mjj (j = 1, 2, 3) and an increase in the coefficient M13.

This work was supported by the Program for Leading Scientific Schools of the Russian Foundation for
Fundamental Research (Grant No. 00-15-96162).
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